학술논문

Scalable cyclic transformation of orbital angular momentum modes based on a nonreciprocal Mach-Zehnder interferometer
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
The orbital angular momentum (OAM) of photons provides a pivotal resource for carrying out high-dimensional classical and quantum information processing due to its unique discrete high-dimensional nature. The cyclic transformation of a set of orthogonal OAM modes is an essential building block for universal high-dimensional information processing. Its realization in the quantum domain is the universal quantum Pauli-X gate. In this work, we experimentally demonstrate a cyclic transformation of six OAM modes with an averaged efficiency higher than 96% by exploiting a nonreciprocal Mach-Zehnder interferometer. Our system is simple and can, in principle, be scaled to more modes. By improving phase stabilization and inputting quantum photonic states, this method can perform universal single-photon quantum Pauli-X gate, thus paving the way for scalable high-dimensional quantum computation.