학술논문

Anatomy of Deconfinement
Document Type
Working Paper
Source
Subject
High Energy Physics - Theory
High Energy Physics - Lattice
High Energy Physics - Phenomenology
Language
Abstract
In the weak coupling limit of ${\rm SU}(N)$ Yang-Mills theory and the ${\rm O}(N)$ vector model, explicit state counting allows us to demonstrate the existence of a partially deconfined phase: $M$ of $N$ colors deconfine, and $\frac{M}{N}$ gradually grows from zero (confinement) to one (complete deconfinement). We point out that the mechanism admits a simple interpretation in the form of spontaneous breaking of gauge symmetry. In terms of the dual gravity theory, such breaking occurs during the formation of a black hole. We speculate whether the breaking and restoration of gauge symmetry can serve as an alternative definition of the deconfinement transition in theories without center symmetry, such as QCD. We also discuss the role of the color degrees of freedom in the emergence of the bulk geometry in holographic duality.
Comment: 22 pages, 5 figures