학술논문

A burst storm from the repeating FRB 20200120E in an M81 globular cluster
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
The repeating fast radio burst (FRB) source FRB 20200120E is exceptional because of its proximity and association with a globular cluster. Here we report $60$ bursts detected with the Effelsberg telescope at 1.4 GHz. We observe large variations in the burst rate, and report the first FRB 20200120E `burst storm', where the source suddenly became active and 53 bursts (fluence $\geq 0.04$ Jy ms) occurred within only 40 minutes. We find no strict periodicity in the burst arrival times, nor any evidence for periodicity in the source's activity between observations. The burst storm shows a steep energy distribution (power-law index $\alpha = 2.39\pm0.12$) and a bi-modal wait-time distribution, with log-normal means of 0.94$^{+0.07}_{-0.06}$ s and 23.61$^{+3.06}_{-2.71}$ s. We attribute these wait-time distribution peaks to a characteristic event timescale and pseudo-Poisson burst rate, respectively. The secondary wait-time peak at $\sim1$ s is $\sim50\times$ longer than the $\sim24$ ms timescale seen for both FRB 20121102A and FRB 20201124A -- potentially indicating a larger emission region, or slower burst propagation. FRB 20200120E shows order-of-magnitude lower burst durations and luminosities compared with FRB 20121102A and FRB 20201124A. Lastly, in contrast to FRB 20121102A, which has observed dispersion measure (DM) variations of $\Delta{\rm DM} >1$ pc cm$^{-3}$ on month-to-year timescales, we determine that FRB 20200120E's DM has remained stable ($\Delta{\rm DM} <0.15$ pc cm$^{-3}$) over $>10$ months. Overall, the observational characteristics of FRB 20200120E deviate quantitatively from other active repeaters, but it is unclear whether it is qualitatively a different type of source.
Comment: Accepted for publication in MNRAS