학술논문

Orders of Magnitude Improved Cyclotron-Mode Cooling for Non-Destructive Spin Quantum Transition Spectroscopy with Single Trapped Antiprotons
Document Type
Working Paper
Source
Subject
Physics - Atomic Physics
Language
Abstract
We demonstrate efficient sub-thermal cooling of the modified cyclotron mode of a single trapped antiproton and reach particle temperatures $T_+=E_+/k_\text{B}$ below $200\,$mK in preparation times shorter than $500\,$s. This corresponds to the fastest resistive single-particle cyclotron cooling to sub-thermal temperatures ever demonstrated. By cooling trapped particles to such low energies, we demonstrate the detection of antiproton spin transitions with an error-rate $<0.000025$, more than three orders of magnitude better than in previous best experiments. This method will have enormous impact on multi-Penning-trap experiments that measure magnetic moments with single nuclear spins for tests of matter/antimatter symmetry, high-precision mass-spectrometry, and measurements of electron $g$-factors bound to highly-charged ions that test quantum electrodynamics.