학술논문

Pre-merger sky localization of gravitational waves from binary neutron star mergers using deep learning
Document Type
Working Paper
Source
The Astrophysical Journal, Volume 959, Number 2 (2023)
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Cosmology and Nongalactic Astrophysics
Language
Abstract
The simultaneous observation of gravitational waves (GW) and prompt electromagnetic counterparts from the merger of two neutron stars can help reveal the properties of extreme matter and gravity during and immediately after the final plunge. Rapid sky localization of these sources is crucial to facilitate such multi-messenger observations. Since GWs from binary neutron star (BNS) mergers can spend up to 10-15 mins in the frequency bands of the detectors at design sensitivity, early warning alerts and pre-merger sky localization can be achieved for sufficiently bright sources, as demonstrated in recent studies. In this work, we present pre-merger BNS sky localization results using CBC-SkyNet, a deep learning model capable of inferring sky location posterior distributions of GW sources at orders of magnitude faster speeds than standard Markov Chain Monte Carlo methods. We test our model's performance on a catalog of simulated injections from Sachdev et al. (2020), recovered at 0-60 secs before merger, and obtain comparable sky localization areas to the rapid localization tool BAYESTAR. These results show the feasibility of our model for rapid pre-merger sky localization and the possibility of follow-up observations for precursor emissions from BNS mergers.
Comment: 7 pages, 5 figures