학술논문

Single-electron occupation in quantum dot arrays at selectable plunger gate voltage
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Quantum Physics
Language
Abstract
The small footprint of semiconductor qubits is favourable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability. Here, we tune these gate voltages and equalize them solely through the temporary application of stress voltages. In a double quantum dot, we reach a stable (1,1) charge state at identical and predetermined plunger gate voltage and for various interdot couplings. Applying our findings, we tune a 2$\times$2 quadruple quantum dot such that the (1,1,1,1) charge state is reached when all plunger gates are set to 1 V. The ability to define required gate voltages may relax requirements on control electronics and operations for spin qubit devices, providing means to advance quantum hardware.