학술논문

Electronic transport in molecular junctions: The generalized Kadanoff-Baym ansatz with initial contact and correlations
Document Type
Working Paper
Source
J. Chem. Phys. 154, 094104 (2021)
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Strongly Correlated Electrons
Physics - Chemical Physics
Language
Abstract
The generalized Kadanoff-Baym ansatz (GKBA) offers a computationally inexpensive approach to simulate out-of-equilibrium quantum systems within the framework of nonequilibrium Green's functions. For finite systems the limitation of neglecting initial correlations in the conventional GKBA approach has recently been overcome [Phys. Rev. B 98, 115148 (2018)]. However, in the context of quantum transport the contacted nature of the initial state, i.e., a junction connected to bulk leads, requires a further extension of the GKBA approach. In this work, we lay down a GKBA scheme which includes initial correlations in a partition-free setting. In practice, this means that the equilibration of the initially correlated and contacted molecular junction can be separated from the real-time evolution. The information about the contacted initial state is included in the out-of-equilibrium calculation via explicit evaluation of the memory integral for the embedding self-energy, which can be performed without affecting the computational scaling with the simulation time and system size. We demonstrate the developed method in carbon-based molecular junctions, where we study the role of electron correlations in transient current signatures.
Comment: 12 pages, 6 figures