학술논문

Chasing the break: Tracing the full evolution of a black hole X-ray binary jet with multi-wavelength spectral modeling
Document Type
Working Paper
Source
2024 ApJ 962 116
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Black hole X-ray binaries (BH XRBs) are ideal targets to study the connection between accretion inflow and jet outflow. Here we present quasi-simultaneous, multi-wavelength observations of the Galactic black hole system MAXI J1820+070, throughout its 2018-2019 outburst. Our data set includes coverage from the radio through X-ray bands from 17 different instruments/telescopes, and encompasses 19 epochs over a 7 month time period, resulting in one of the most well-sampled multi-wavelength data sets of a BH XRB outburst to date. With our data, we compile and model the broad-band spectra of this source using a phenomenological model that includes emission from the jet, companion star, and accretion flow. This modeling allows us to track the evolution of the spectral break in the jet spectrum, a key observable that samples the jet launching region. We find that the spectral break location changes over at least $\approx3$ orders of magnitude in electromagnetic frequency over this period. Using these spectral break measurements, we link the full cycle of jet behavior, including the rising, quenching, and re-ignition, to the changing accretion flow properties as the source evolves through its different accretion states. Our analyses show a consistent jet behavior with other sources in similar phases of their outbursts, reinforcing that the jet quenching and recovery may be a global feature of BH XRB systems in outburst. Our results also provide valuable evidence supporting a close connection between the geometry of the inner accretion flow and the base of the jet.
Comment: Accepted for publication in ApJ