학술논문

Resonant Quantum Magnetodielectric Effect in Multiferroic Metal-Organic Framework [CH3NH3]Co(HCOO)3
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
We report the observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CH3NH3]Co(HCOO)3. An intrinsic magnetic phase separation emerges at low temperatures due to hydrogen-bond-modified long range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion magnet. Subsequently, a stair-shaped magnetic hysteresis loop along the [101] direction characterizing the RQTM appears below the magnetic blocking temperature. More interestingly, the magnetic field dependence of dielectric permittivity exhibits pronounced negative peaks at the critical fields corresponding to the RQTM, a phenomenon termed the RQMD effect which enables electrical detection of the RQTM. These intriguing properties make the multiferroic metal-organic framework a promising candidate for solid-state quantum computing.
Comment: 13 pages, 4 figures