학술논문

QUBIC II: Spectro-Polarimetry with Bolometric Interferometry
Document Type
Working Paper
Author
Mousset, L.Lerena, M. M. GamboaBattistelli, E. S.de Bernardis, P.Chanial, P.D'Alessandro, G.Dashyan, G.De Petris, M.Grandsire, L.Hamilton, J. -Ch.Incardona, F.Landau, S.Marnieros, S.Masi, S.Mennella, A.O'Sullivan, C.Piat, M.Ricciardi, G.Scóccola, C. G.Stolpovskiy, M.Tartari, A.Thermeau, J. -P.Torchinsky, S. A.Voisin, F.Zannoni, M.Ade, P.Alberro, J. G.Almela, A.Amico, G.Arnaldi, L. H.Auguste, D.Aumont, J.Azzoni, S.Banfi, S.Bélier, B.Baù, A.Bennett, D.Bergé, L.Bernard, J. -Ph.Bersanelli, M.Bigot-Sazy, M. -A.Bonaparte, J.Bonis, J.Bunn, E.Burke, D.Buzi, D.Cavaliere, F.Chapron, C.Charlassier, R.Cerutti, A. C. CobosColumbro, F.Coppolecchia, A.De Gasperis, G.De Leo, M.Dheilly, S.Duca, C.Dumoulin, L.Etchegoyen, A.Fasciszewski, A.Ferreyro, L. P.Fracchia, D.Franceschet, C.Ganga, K. M.García, B.Redondo, M. E. GarcíaGaspard, M.Gayer, D.Gervasi, M.Giard, M.Gilles, V.Giraud-Heraud, Y.Berisso, M. GómezGonzález, M.Gradziel, M.Hampel, M. R.Harari, D.Henrot-Versillé, S.Jules, E.Kaplan, J.Kristukat, C.Lamagna, L.Loucatos, S.Louis, T.Maffei, B.Marty, W.Mattei, A.May, A.McCulloch, M.Mele, L.Melo, D.Montier, L.Mundo, L. M.Murphy, J. A.Murphy, J. D.Nati, F.Olivieri, E.Oriol, C.Paiella, A.Pajot, F.Passerini, A.Pastoriza, H.Pelosi, A.Perbost, C.Perciballi, M.Pezzotta, F.Piacentini, F.Piccirillo, L.Pisano, G.Platino, M.Polenta, G.Prêle, D.Puddu, R.Rambaud, D.Rasztocky, E.Ringegni, P.Romero, G. E.Salum, J. M.Schillaci, A.Scully, S.Spinelli, S.Stankowiak, G.Supanitsky, A. D.Timbie, P.Tomasi, M.Tucker, G.Tucker, C.Viganò, D.Vittorio, N.Wicek, F.Wright, M.Zullo, A.
Source
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
Bolometric interferometry is a novel technique that has the ability to perform spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and can reconstruct sky maps in several sub-bands within the physical band in post-processing of the data. This provides a powerful spectral method to discriminate between the cosmic microwave background (CMB) and astrophysical foregrounds. In this paper, the methodology is illustrated with examples based on the Q \& U Bolometric Interferometer for Cosmology (QUBIC) which is a ground-based instrument designed to measure the B-mode polarization of the sky at millimeter wavelengths. We consider the specific cases of point source reconstruction and Galactic dust mapping and we characterize the point spread function as a function of frequency. We study the noise properties of spectral imaging, especially the correlations between sub-bands, using end-to-end simulations together with a fast noise simulator. We conclude showing that spectral imaging performance are nearly optimal up to five sub-bands in the case of QUBIC.
Comment: 27 pages, 18 figures. Accepted by JCAP on July 6, 2021. Second paper of series of 8 in a special JCAP edition on QUBIC