학술논문

Euclid preparation: XIII. Forecasts for galaxy morphology with the Euclid Survey using Deep Generative Models
Document Type
Working Paper
Author
Euclid CollaborationBretonnière, H.Huertas-Company, M.Boucaud, A.Lanusse, F.Jullo, E.Merlin, E.Tuccillo, D.Castellano, M.Brinchmann, J.Conselice, C. J.Dole, H.Cabanac, R.Courtois, H. M.Castander, F. J.Duc, P. A.Fosalba, P.Guinet, D.Kruk, S.Kuchner, U.Serrano, S.Soubrie, E.Tramacere, A.Wang, L.Amara, A.Auricchio, N.Bender, R.Bodendorf, C.Bonino, D.Branchini, E.Capobianco, V.Carbone, C.Carretero, J.Cavuoti, S.Cimatti, A.Cledassou, R.Corcione, L.Costille, A.Degaudenzi, H.Douspis, M.Dubath, F.Dusini, S.Ferriol, S.Frailis, M.Franceschi, E.Fumana, M.Garilli, B.Giocoli, C.Grazian, A.Grupp, F.Haugan, S. V. H.Holmes, W.Hormuth, F.Hudelot, P.Jahnke, K.Kiessling, A.Kilbinger, M.Kitching, T.Kümmel, M.Kunz, M.Kurki-Suonio, H.Ligori, S.Lilje, P. B.Lloro, I.Maiorano, E.Mansutti, O.Marggraf, O.Markovic, K.Massey, R.Melchior, M.Meneghetti, M.Meylan, G.Moscardini, L.Niemi, S. M.Padilla, C.Paltani, S.Pasian, F.Pedersen, K.Pettorino, V.Pires, S.Poncet, M.Popa, L.Pozzetti, L.Raison, F.Rebolo, R.Rhodes, J.Roncarelli, M.Rossetti, E.Saglia, R.Schneider, P.Secroun, A.Seidel, G.Sirignano, C.Sirri, G.Starck, J. -L.Taylor, A. N.Tereno, I.Toledo-Moreo, R.Valentijn, E. A.Valenziano, L.Wang, Y.Weller, J.Zamorani, G.Zoubian, J.Baldi, M.Bardelli, S.Brau-Nogue, S.Brescia, M.Camera, S.Congedo, G.Conversi, L.Copin, Y.Duncan, C . A. J.Dupac, X.Farinelli, R.Gillis, B.Kermiche, S.Kohley, R.Marulli, F.Medinaceli, E.Mei, S.Moresco, M.Morin, B.Munari, E.Polenta, G.Romelli, E.Tallada-Crespí, P.Tenti, M.Torradeflot, F.Vassallo, T.Welikala, N.Zacchei, A.Zucca, E.Baccigalupi, C.Balaguera-Antolínez, A.Biviano, A.Borgani, S.Bozzo, E.Burigana, C.Cappi, A.Carvalho, C. S.Casas, S.Castignani, G.Colodro-Conde, C.Coupon, J.Da Silva, A.de la Torre, S.Fabricius, M.Farina, M.Farrens, S.Ferreira, P. G.Flose-Reimberg, P.Fotopoulou, S.Galeotta, S.Ganga, K.Garcia-Bellido, J.Gaztanaga, E.Gillard, W.Gozaliasl, G.Hook, I. M.Joachimi, B.Kansal, V.Kashlinsky, A.Keihanen, E.Kirkpatrick, C. C.Lindholm, V.Mainetti, G.Maino, D.Maoli, R.Martinelli, M.Martinet, N.Maurogordato, S.McCracken, H. J.Metcalf, R. B.Morgante, G.Morisset, N.Nakajima, R.Nightingale, J.Nucita, A.Patrizii, L.Potter, D.Renzi, A.Riccio, G.Sánchez, A. G.Sapone, D.Schirmer, M.Schultheis, M.Scottez, V.Sefusatti, E.Stanco, L.Teyssier, R.Tutusaus, I.Valiviita, J.Viel, M.Whittaker, L.Knapen, J. H
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present a machine learning framework to simulate realistic galaxies for the Euclid Survey. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of $0.4\,\rm{deg}^2$ as it will be seen by the Euclid visible imager VIS and show that galaxy structural parameters are recovered with similar accuracy as for pure analytic S\'ersic profiles. Based on these simulations, we estimate that the Euclid Wide Survey will be able to resolve the internal morphological structure of galaxies down to a surface brightness of $22.5\,\rm{mag}\,\rm{arcsec}^{-2}$, and $24.9\,\rm{mag}\,\rm{arcsec}^{-2}$ for the Euclid Deep Survey. This corresponds to approximately $250$ million galaxies at the end of the mission and a $50\,\%$ complete sample for stellar masses above $10^{10.6}\,\rm{M}_\odot$ (resp. $10^{9.6}\,\rm{M}_\odot$) at a redshift $z\sim0.5$ for the wide (resp. deep) survey. The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
Comment: 22 pages, 21 figures (6 in appendinx). Accepted for publication to A&A. Change in the title for Euclid submission chronology coherence. Few changes for clarification