학술논문

Additive GaN solid immersion lenses for enhanced photon extraction efficiency from diamond color centers
Document Type
Working Paper
Source
Subject
Physics - Optics
Physics - Applied Physics
Quantum Physics
Language
Abstract
Effective light extraction from optically active solid-state spin centres inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centres in wider quantum systems. Here we report increased fluorescent light collection efficiency from laser-written nitrogen vacancy centers (NV) in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centres and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes towards future scalable systems development. The micro-lenses are integrated in a non-invasive manner, as they are added on top of the unstructured diamond surface and bond by Van-der-Waals forces. For emitters at 5 micrometer depth, we find approximately 2x improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.
Comment: 21 pages, 13 figures