학술논문

Brain structure can mediate or moderate the relationship of behavior to brain function and transcriptome. A preliminary study
Document Type
Working Paper
Source
Subject
Quantitative Biology - Quantitative Methods
Language
Abstract
Abnormalities in motor-control behavior, which have been with concussion and head acceleration events (HAE), can be quantified using virtual reality (VR) technologies. Motor-control behavior has been consistently mapped to the brain's somatomotor network (SM) using both structural (sMRI) and functional MRI (fMRI). However, no studies habe integrated HAE, motor-control behavior, sMRI and fMRI measures. Here, brain networks important for motor-control were hypothesized to show changes in tractography-based diffusion weighted imaging [difference in fractional anisotropy (dFA)] and resting-state fMRI (rs-fMRI) measures in collegiate American football players across the season, and that these measures would relate to VR-based motor-control. We firther tested if nine inflammation-related miRNAs were associated with behavior-structure-function variables. Using permutation-based mediation and moderation methods, we found that across-season dFA from the SM structural connectome (SM-dFA) mediated the relationship between across-season VR-based Sensory-motor Reactivity (dSR) and rs-fMRI SM fingerprint similarity (p = 0.007 and Teff = 47%). The interaction between dSR and SM-dFA also predicted (pF = 0.036, pbeta3 = 0.058) across-season levels of dmiRNA-30d through permutation-based moderation analysis. These results suggest (1) that motor-control is in a feedback relationship with brain structure and function, (2) behavior-structure-function can be connected to HAE, and (3) behavior-structure might predict molecular biology measures.
Comment: 62 pages, 4 figures, 2 tables