학술논문

Effect of Pauli repulsion and transfer on fusion
Document Type
Working Paper
Source
Subject
Nuclear Theory
Language
Abstract
The effect of the Pauli exclusion principle on the nucleus-nucleus bare potential is studied using a new density-constrained extension of the Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a repulsion at short distance. The charge product dependence of this Pauli repulsion is investigated. Dynamical effects are then included in the potential with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In particular, isovector contributions to this potential are used to investigate the role of transfer on fusion, resulting in a lowering of the inner part of the potential for systems with positive Q-value transfer channels.
Comment: Proceedings of an invited talk given at FUSION17, Hobart, Tasmania, AU (20-24 February, 2017)