학술논문

Magneto-electric point scattering theory for metamaterial scatterers
Document Type
Working Paper
Source
Phys. Rev. B 83, 245102:1-12, (2011)
Subject
Physics - Optics
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
We present a new, fully analytical point scattering model which can be applied to arbitrary anisotropic magneto-electric dipole scatterers, including split ring resonators (SRRs), chiral and anisotropic plasmonic scatterers. We have taken proper account of reciprocity and radiation damping for electric and magnetic scatterers with any general polarizability tensor. Specifically, we show how reciprocity and energy balance puts constraints on the electrodynamic responses arbitrary scatterers can have to light. Our theory sheds new light on the magnitude of cross sections for scattering and extinction, and for instance on the emergence of structural chirality in the optical response of geometrically non-chiral scatterers like SRRs. We apply the model to SRRs and discuss how to extract individual components of the polarizability matrix and extinction cross sections. Finally, we show that our model describes well the extinction of stereo-dimers of split rings, while providing new insights in the underlying coupling mechanisms.
Comment: 12 pages, 3 figures