학술논문

LEO Satellite and RIS: Two Keys to Seamless Indoor and Outdoor Localization
Document Type
Working Paper
Source
Subject
Electrical Engineering and Systems Science - Signal Processing
Electrical Engineering and Systems Science - Systems and Control
Language
Abstract
The contemporary landscape of wireless technology underscores the critical role of precise localization services. Traditional global navigation satellite systems (GNSS)-based solutions, however, fall short when it comes to indoor environments, and existing indoor localization techniques such as electromagnetic fingerprinting methods face challenges of high implementation costs and limited coverage. This article explores an innovative solution that seamlessly blends low Earth orbit (LEO) satellites with reconfigurable intelligent surfaces (RISs), unlocking its potential for realizing uninterrupted indoor and outdoor localization with global coverage. By leveraging the strong signal reception of the LEO satellite signals and capitalizing on the radio environment-reshaping capability of RISs, the integration of these two technologies presents a vision of a future where localization services transcend existing constraints. After a comprehensive review of the distinctive attributes of LEO satellites and RISs, we evaluate the localization error bounds for the proposed collaborative system, showcasing their promising performance on simultaneous indoor and outdoor localization. To conclude, we engage in a discussion on open problems and future research directions for LEO satellite and RIS-enabled localization.