학술논문

Vacuum Landscaping: Cause of Nonlocal Influences without Signaling
Document Type
Working Paper
Source
Entropy 2018, 20(6), 458
Subject
Quantum Physics
Language
Abstract
In the quest for an understanding of nonlocality with respect to an appropriate ontology, we propose a "cosmological solution". We assume that from the beginning of the universe each point in space has been the location of a scalar field representing a zero-point vacuum energy that nonlocally vibrates at a vast range of different frequencies across the whole universe. A quantum, then, is a nonequilibrium steady state in the form of a "bouncer" coupled resonantly to one of those (particle type dependent) frequencies, in remote analogy to the bouncing oil drops on an oscillating oil bath as in Couder's experiments. A major difference to the latter analogy is given by the nonlocal nature of the vacuum oscillations. We show with the examples of double- and $n$-slit interference that the assumed nonlocality of the distribution functions alone suffices to derive the de Broglie-Bohm guiding equation for $N$ particles with otherwise purely classical means. In our model, no influences from configuration space are required, as everything can be described in 3-space. Importantly, the setting up of an experimental arrangement limits and shapes the forward and osmotic contributions and is described as vacuum landscaping.
Comment: 21 pages, 3 figures; talk presented at the 4th international symposium on "Emergent Quantum Mechanics" (London, UK, 26-28 October, 2017); http://emqm17.org/