학술논문

Rapidity dependence of initial state geometry and momentum correlations in p+Pb collisions
Document Type
Working Paper
Source
Subject
Nuclear Theory
High Energy Physics - Phenomenology
Language
Abstract
Event geometry and initial state correlations have been invoked as possible explanations of long range azimuthal correlations observed in high multiplicity p+p and p+Pb collisions. We study the rapidity dependence of initial state momentum correlations and event-by-event geometry in $\sqrt{s}=5.02~\rm{TeV}$ p+Pb collisions within the 3+1D IP-Glasma model~\cite{Schenke:2016ksl}, where the longitudinal structure is governed by JIMWLK rapidity evolution of the incoming nuclear gluon distributions. We find that the event geometry is correlated across large rapidity intervals whereas initial state momentum correlations are relatively short range in rapidity. Based on our results, we discuss implications for the relevance of both effects in explaining the origin of collective phenomena in small systems.
Comment: 17 pages, 14 figures