학술논문

Flashes and rainbows in tournaments
Document Type
Working Paper
Source
Subject
Mathematics - Combinatorics
05C55, 05C35, 05C38
Language
Abstract
Colour the edges of the complete graph with vertex set $\{1, 2, \dotsc, n\}$ with an arbitrary number of colours. What is the smallest integer $f(l,k)$ such that if $n > f(l,k)$ then there must exist a monotone monochromatic path of length $l$ or a monotone rainbow path of length $k$? Lefmann, R\"{o}dl, and Thomas conjectured in 1992 that $f(l, k) = l^{k - 1}$ and proved this for $l \ge (3 k)^{2 k}$. We prove the conjecture for $l \geq k^3 (\log k)^{1 + o(1)}$ and establish the general upper bound $f(l, k) \leq k (\log k)^{1 + o(1)} \cdot l^{k - 1}$. This reduces the gap between the best lower and upper bounds from exponential to polynomial in $k$. We also generalise some of these results to the tournament setting.
Comment: 14 pages, improved Theorem 1.3 slightly