학술논문

Cooperation and Federation in Distributed Radar Point Cloud Processing
Document Type
Working Paper
Source
2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Subject
Computer Science - Machine Learning
Computer Science - Computer Vision and Pattern Recognition
Computer Science - Information Theory
Language
Abstract
The paper considers the problem of human-scale RF sensing utilizing a network of resource-constrained MIMO radars with low range-azimuth resolution. The radars operate in the mmWave band and obtain time-varying 3D point cloud (PC) information that is sensitive to body movements. They also observe the same scene from different views and cooperate while sensing the environment using a sidelink communication channel. Conventional cooperation setups allow the radars to mutually exchange raw PC information to improve ego sensing. The paper proposes a federation mechanism where the radars exchange the parameters of a Bayesian posterior measure of the observed PCs, rather than raw data. The radars act as distributed parameter servers to reconstruct a global posterior (i.e., federated posterior) using Bayesian tools. The paper quantifies and compares the benefits of radar federation with respect to cooperation mechanisms. Both approaches are validated by experiments with a real-time demonstration platform. Federation makes minimal use of the sidelink communication channel (20 {\div} 25 times lower bandwidth use) and is less sensitive to unresolved targets. On the other hand, cooperation reduces the mean absolute target estimation error of about 20%.