학술논문

Study of the ionization efficiency for nuclear recoils in pure crystals
Document Type
Working Paper
Source
Phys. Rev. D 101, 102001 (2020)
Subject
High Energy Physics - Phenomenology
Physics - Instrumentation and Detectors
Language
Abstract
We study the basic integral equation in Lindhard's theory describing the energy given to atomic motion by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical solution, which depends only on the slope of the velocity-proportional electronic stopping power and the binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils features a cut-off at an energy equal to twice the assumed binding energy. We argue that the model is a reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil energies greater than ~500 eV.
Comment: 10 pages, 7 figures