학술논문

Correlation between microstructural deformation mechanisms and acoustic parameters on a cold-rolled Cu30Zn brass
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Physics - Applied Physics
Language
Abstract
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 {\deg}C for 30 minutes, was cold rolled to reductions in the 10-70\% range. Using the pulse-echo method, linear ultrasonic measurements were performed on each of the nine specimens, corresponding to the nine different reductions, recording the wave times of flight of longitudinal wave along the thickness axis. Subsequently, acoustic measurements were performed to determine the nonlinear parameter ($\beta$) through the second harmonic generation. X-ray diffraction analysis revealed a steady increase and subsequent saturation of deformation twins at 40\% thickness reduction. At higher deformations, the microstructure revealed the generation and proliferation of shear bands, which coincided with a decrease in the twinning structure and an increase in dislocation density rate. Longitudinal wave velocity exhibited a 0.9\% decrease at 20\% deformation, followed by a continuous increase of 2\% beyond this point. These results can be rationalized as a competition between a proliferation of dislocations, which tends to decrease the linear sound velocity, and a decrease in average grain size, which tends to increase it. These variations are in agreement with the values obtained with XRD, Vickers hardness and metallography measurements. The nonlinear parameter $\beta$ shows a significant maximum, at the factor of 8 level, at 40\% deformation. This maximum correlates well with a similar maximum, at a factor of ten level and also at 40\% deformation, of the twinning fault probability.
Comment: 15 pages, 8 figures