학술논문

Pulseshape discrimination against low-energy Ar-39 beta decays in liquid argon with 4.5 tonne-years of DEAP-3600 data
Document Type
Working Paper
Author
The DEAP CollaborationAdhikari, P.Ajaj, R.Alpízar-Venegas, M.Amaudruz, P. -A.Auty, D. J.Batygov, M.Beltran, B.Benmansour, H.Bina, C. E.Bonatt, J.Bonivento, W.Boulay, M. G.Broerman, B.Bueno, J. F.Burghardt, P. M.Butcher, A.Cadeddu, M.Cai, B.Cárdenas-Montes, M.Cavuoti, S.Chen, M.Chen, Y.Cleveland, B. T.Corning, J. M.Cranshaw, D.Daugherty, S.DelGobbo, P.Dering, K.DiGioseffo, J.Di Stefano, P.Doria, L.Duncan, F. A.Dunford, M.Ellingwood, E.Erlandson, A.Farahani, S. S.Fatemighomi, N.Fiorillo, G.Florian, S.Flower, T.Ford, R. J.Gagnon, R.Gallacher, D.Abia, P. GarcíaGarg, S.Giampa, P.Goeldi, D.Golovko, V.Gorel, P.Graham, K.Grant, D. R.Grobov, A.Hallin, A. L.Hamstra, M.Harvey, P. J.Hearns, C.Hugues, T.Ilyasov, A.Joy, A.Jigmeddorj, B.Jillings, C. J.Kamaev, O.Kaur, G.Kemp, A.Kochanek, I.Kuźniak, M.Lai, M.Langrock, S.Lehnert, B.Leonhardt, A.Levashko, N.Li, X.Lidgard, J.Lindner, T.Lissia, M.Lock, J.Longo, G.Machulin, I.McDonald, A. B.McElroy, T.McGinn, T.McLaughlin, J. B.Mehdiyev, R.Mielnichuk, C.Monroe, J.Nadeau, P.Nantais, C.Ng, C.Noble, A. J.O'Dwyer, E.Oliviéro, G.Ouellet, C.Pal, S.Pasuthip, P.Peeters, S. J. M.Perry, M.Pesudo, V.Picciau, E.Piro, M. -C.Pollmann, T. R.Rand, E. T.Rethmeier, C.Retière, F.Rodríguez-García, I.Roszkowski, L.Ruhland, J. B.Sánchez-García, E.Santorelli, R.Sinclair, D.Skensved, P.Smith, B.Smith, N. J. T.Sonley, T.Soukup, J.Stainforth, R.Stone, C.Strickland, V.Stringer, M.Sur, B.Tang, J.Vázquez-Jáuregui, E.Viel, S.Walding, J.Waqar, M.Ward, M.Westerdale, S.Willis, J.Zuñiga-Reyes, A.
Source
Eur. Phys. J. C 81, 823 (2021)
Subject
Physics - Instrumentation and Detectors
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from $^{39}$Ar beta decays and is suppressed using pulseshape discrimination (PSD). We use two types of PSD algorithm: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the charge of a single photoelectron, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulseshape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.
Comment: 14 pages, 9 figures