학술논문

Computing zeta functions of large polynomial systems over finite fields
Document Type
Working Paper
Source
Subject
Mathematics - Number Theory
Computer Science - Computational Complexity
Language
Abstract
In this paper, we improve the algorithms of Lauder-Wan \cite{LW} and Harvey \cite{Ha} to compute the zeta function of a system of $m$ polynomial equations in $n$ variables over the finite field $\FF_q$ of $q$ elements, for $m$ large. The dependence on $m$ in the original algorithms was exponential in $m$. Our main result is a reduction of the exponential dependence on $m$ to a polynomial dependence on $m$. As an application, we speed up a doubly exponential time algorithm from a software verification paper \cite{BJK} (on universal equivalence of programs over finite fields) to singly exponential time. One key new ingredient is an effective version of the classical Kronecker theorem which (set-theoretically) reduces the number of defining equations for a "large" polynomial system over $\FF_q$ when $q$ is suitably large.