학술논문

Multifold topological semimetals
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
The discovery of topological semimetals with multifold band crossings has opened up a new and exciting frontier in the field of topological physics. These materials exhibit large Chern numbers, leading to long double Fermi arcs on their surfaces, which are protected by either crystal symmetries or topological order. The impact of these multifold crossings extends beyond surface science, as they are not constrained by the Poincar\'e classification of quasiparticles and only need to respect the crystal symmetry of one of the 1651 magnetic space groups. Consequently, we observe the emergence of free fermionic excitations in solid-state systems that have no high-energy counterparts, protected by non-symmorphic symmetries. In this work, we review the recent theoretical and experimental progress made in the field of multifold topological semimetals. We begin with the theoretical prediction of the so-called multifold fermions and discuss the subsequent discoveries of chiral and magnetic topological semimetals. Several experiments that have realized chiral semimetals in spectroscopic measurements are described, and we discuss the future prospects of this field. These exciting developments have the potential to deepen our understanding of the fundamental properties of quantum matter and inspire new technological applications in the future.
Comment: 9 pages, 2 figures