학술논문

Zero and extremely low metallicity rotating massive stars: evolution, explosion, and nucleosynthesis up to the heaviest nuclei
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
We present the evolution and the explosion of two massive stars, 15 and 25 M$_{\odot}$, spanning a wide range of initial rotation velocities (from 0 to 800 km/s) and three initial metallicities: Z=0 ([Fe/H]=$-\infty$), $3.236\times10^{-7}$ ([Fe/H]=-5), and $3.236\times10^{-6}$ ([Fe/H]=-4). A very large nuclear network of 524 nuclear species extending up to Bi has been adopted. Our main findings may be summarized as follows: a) rotating models above Z=0 are able to produce nuclei up to the neutron closure shell at N=50, and in a few cases up to N=82; b) rotation drastically inhibits the penetration of the He convective shell in the H rich mantle, phenomenon often found in zero metallicity non rotating massive stars; c) vice versa rotation favors the penetration of the O convective shell in the C rich layers with the consequence of altering significantly the yields of the products of the C, Ne, and O burning; d) none of the models that reach the critical velocity while in H burning, loses more the 1 M$_{\odot}$ in this phase; e) conversely, almost all models able to reach their Hayashi track exceed the Eddington luminosity and lose dynamically almost all their H rich mantle. These models suggest that rotating massive stars may have contributed significantly to the synthesis of the heavy nuclei in the first phase of enrichment of the interstellar medium, i.e., at early times.
Comment: 91 pages, 37 figures, 13 tables. Accepted for publication in ApJS