학술논문

Equilibrium Selection in Replicator Equations Using Adaptive-Gain Control
Document Type
Working Paper
Source
Subject
Electrical Engineering and Systems Science - Systems and Control
Mathematics - Dynamical Systems
Mathematics - Optimization and Control
Language
Abstract
In this paper, we deal with the equilibrium selection problem, which amounts to steering a population of individuals engaged in strategic game-theoretic interactions to a desired collective behavior. In the literature, this problem has been typically tackled by means of open-loop strategies, whose applicability is however limited by the need of accurate a priori information on the game and scarce robustness to uncertainty and noise. Here, we overcome these limitations by adopting a closed-loop approach using an adaptive-gain control scheme within a replicator equation -a nonlinear ordinary differential equation that models the evolution of the collective behavior of the population. For most classes of 2-action matrix games we establish sufficient conditions to design a controller that guarantees convergence of the replicator equation to the desired equilibrium, requiring limited a-priori information on the game. Numerical simulations corroborate and expand our theoretical findings.
Comment: Under Review