학술논문

Helium fluxes measured by the PAMELA experiment from the minimum to the maximum solar activity for solar cycle 24
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Time-dependent energy spectra of galactic cosmic rays (GCRs) carry fundamental information regarding their origin and propagation. When observed at the Earth, these spectra are significantly affected by the solar wind and the embedded solar magnetic field that permeates the heliosphere, changing significantly over an 11-year solar cycle. Energy spectra of GCRs measured during different epochs of solar activity provide crucial information for a thorough understanding of solar and heliospheric phenomena. The PAMELA experiment had collected data for almost ten years (15th June 2006 - 23rd January 2016), including the minimum phase of solar cycle 23 and the maximum phase of solar cycle 24. In this paper, we present new spectra for helium nuclei measured by the PAMELA instrument from January 2010 to September 2014 over a three Carrington rotation time basis. These data are compared to the PAMELA spectra measured during the previous solar minimum providing a picture of the time dependence of the helium nuclei fluxes over a nearly full solar cycle. Time and rigidity dependencies are observed in the proton-to-helium flux ratios. The force-field approximation of the solar modulation was used to relate these dependencies to the shapes of the local interstellar proton and helium-nuclei spectra.
Comment: 9 pages, 5 figures