학술논문

Potential for a precision measurement of solar $pp$ neutrinos in the Serappis Experiment
Document Type
Working Paper
Source
Subject
Physics - Instrumentation and Detectors
High Energy Physics - Experiment
Language
Abstract
The Serappis (SEarch for RAre PP-neutrinos In Scintillator) project aims at a precision measurement of the flux of solar $pp$ neutrinos on the few-percent level. Such a measurement will be a relevant contribution to the study of solar neutrino oscillation parameters and a sensitive test of the solar luminosity constraint. The concept of Serappis relies on a small organic liquid scintillator detector ($\sim$20 m$^3$) with excellent energy resolution ($\sim$2.5 % at 1 MeV), low internal background and sufficient shielding from surrounding radioactivity. This can be achieved by a minor upgrade of the OSIRIS facility at the site of the JUNO neutrino experiment in southern China. To go substantially beyond current accuracy levels for the $pp$ flux, an organic scintillator with ultra-low $^{14}$C levels (below $10^{-18}$) is required. The existing OSIRIS detector and JUNO infrastructure will be instrumental in identifying suitable scintillator materials, offering a unique chance for a low-budget high-precision measurement of a fundamental property of our Sun that will be otherwise hard to access.
Comment: 13 pages, 5 figures