학술논문

LMC Stars and Where to Find Them: Inferring Birth Radii for External Galaxies
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
It is well known that stars move away from their birth location over time via radial migration. This dynamical process makes computing the correct chemical evolution, e.g., metallicity gradients, of galaxies very difficult. This dynamical process makes inferring the chemical evolution of observed galaxies from their measured abundance gradients very difficult. One way to account for radial migration is to infer stellar birth radii for individual stars. Many attempts to do so have been performed over the last years, but are limited to the Milky Way as computing the birth position of stars requires precise measurements of stellar metallicity and age for individual stars that cover large Galactic radii. Fortunately, recent and future surveys will provide numerous opportunities for inferring birth radii for external galaxies such as the Large Magellanic Cloud (LMC). In this paper, we investigate the possibility of doing so using the NIHAO cosmological zoom-in simulations. We find that it is theoretically possible to infer birth radii with a ~ 25% median uncertainty for individual stars in galaxies with i) orderliness of the orbits, $\langle v_\phi \rangle/\sigma_{v} >$ 2, ii) a dark matter halo mass greater or equal to approximately the LMC mass (~ 2 x 10$^{11} M_\odot$), and iii) after the average azimuthal velocity of the stellar disk reaches ~70% of its maximum. From our analysis, we conclude that it is possible and useful to infer birth radii for the LMC and other external galaxies that satisfy the above criteria.
Comment: 8 pages, 8 figures. Missing citations welcome