학술논문

Demonstration of Machine Learning-assisted real-time noise regression in gravitational wave detectors
Document Type
Working Paper
Source
Subject
General Relativity and Quantum Cosmology
Language
Abstract
Real-time noise regression algorithms are crucial for maximizing the science outcomes of the LIGO, Virgo, and KAGRA gravitational-wave detectors. This includes improvements in the detectability, source localization and pre-merger detectability of signals thereby enabling rapid multi-messenger follow-up. In this paper, we demonstrate the effectiveness of \textit{DeepClean}, a convolutional neural network architecture that uses witness sensors to estimate and subtract non-linear and non-stationary noise from gravitational-wave strain data. Our study uses LIGO data from the third observing run with injected compact binary signals. As a demonstration, we use \textit{DeepClean} to subtract the noise at 60 Hz due to the power mains and their sidebands arising from non-linear coupling with other instrumental noise sources. Our parameter estimation study on the injected signals shows that \textit{DeepClean} does not do any harm to the underlying astrophysical signals in the data while it can enhances the signal-to-noise ratio of potential signals. We show that \textit{DeepClean} can be used for low-latency noise regression to produce cleaned output data at latencies $\sim 1-2$\, s. We also discuss various considerations that may be made while training \textit{DeepClean} for low latency applications.