학술논문

Evolution of major sedimentary mounds on Mars
Document Type
Working Paper
Source
Journal of Geophysical Research - Planets, 121, 2282
Subject
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
We present a new database of $>$300 layer-orientations from sedimentary mounds on Mars. These layer orientations, together with draped landslides, and draping of rocks over differentially-eroded paleo-domes, indicate that for the stratigraphically-uppermost $\sim$1 km, the mounds formed by the accretion of draping strata in a mound-shape. The layer-orientation data further suggest that layers lower down in the stratigraphy also formed by the accretion of draping strata in a mound-shape. The data are consistent with terrain-influenced wind erosion, but inconsistent with tilting by flexure, differential compaction over basement, or viscoelastic rebound. We use a simple landscape evolution model to show how the erosion and deposition of mound strata can be modulated by shifts in obliquity. The model is driven by multi-Gyr calculations of Mars' chaotic obliquity and a parameterization of terrain-influenced wind erosion that is derived from mesoscale modeling. Our results suggest that mound-spanning unconformities with kilometers of relief emerge as the result of chaotic obliquity shifts. Our results support the interpretation that Mars' rocks record intermittent liquid-water runoff during a $>$10$^8$-yr interval of sedimentary rock emplacement.