학술논문

Think While You Write: Hypothesis Verification Promotes Faithful Knowledge-to-Text Generation
Document Type
Working Paper
Source
Subject
Computer Science - Computation and Language
Computer Science - Artificial Intelligence
Language
Abstract
Knowledge-to-text generators often struggle to faithfully generate descriptions for the input facts: they may produce hallucinations that contradict the input, or describe facts not present in the input. To reduce hallucinations, we propose a decoding-only method, TWEAK (Think While Effectively Articulating Knowledge), which can be integrated with any generator without retraining. TWEAK treats the generated sequences at each decoding step and its future sequences as hypotheses, and ranks each generation candidate based on the extent to which their hypotheses are supported by the input facts using a Hypothesis Verification Model (HVM). We first demonstrate the effectiveness of TWEAK by using a Natural Language Inference (NLI) model as the HVM and report improved faithfulness with a minimal impact on the quality. We then replace the NLI model with a task-specific HVM trained with a first-of-a-kind dataset, FATE (Fact-Aligned Textual Entailment), which pairs input facts with their original and perturbed descriptions. We test TWEAK with two generators, and the best TWEAK variants improve on average for the two models by 2.24/7.17 points in faithfulness (FactKB) in in/out-of-distribution evaluations, respectively, and with only a 0.14/0.32-point decline in quality (BERTScore).
Comment: NAACL 2024 (Findings)