학술논문

From gamma ray line signals of dark matter to the LHC
Document Type
Working Paper
Source
Phys.Dark.Univ. 2 (2013) 22-34
Subject
High Energy Physics - Phenomenology
Astrophysics - Cosmology and Extragalactic Astrophysics
High Energy Physics - Experiment
Language
Abstract
We explore the relationship between astrophysical gamma-ray signals and LHC signatures for a class of phenomenologically successful secluded dark matter models, motivated by recent evidence for a ~130 GeV gamma-ray line. We consider in detail scenarios in which interactions between the dark sector and the standard model are mediated by a vev-less scalar field \phi, transforming as an N-plet (N > 3) under SU(2)_L. Since some of the component fields of \phi carry large electric charges, loop induced dark matter annihilation to \gamma \gamma and \gamma Z can be enhanced without the need for non-perturbatively large couplings, and without overproduction of continuum gamma-rays from other final states. We discuss prospects for other experimental tests, including dark matter-nucleon scattering and production of \phi at the LHC, where future searches for anomalous charged tracks may be sensitive. The first LHC hints could come from the Higgs sector, where loop corrections involving \phi lead to significantly modified h to \gamma \gamma and h to \gamma Z branching ratios.
Comment: 27 pages, 10 figures. v2: added references, fixed import-order issue with cleveref and hyperref. v3: updated to journal version. v4: erratum correction to figs. 7-8 for monojet/monophoton cross-sections