학술논문

High Energy Density in layered 2D Nanomaterial based Polymer Dielectric Films
Document Type
Working Paper
Source
ACS Nano 2023
Subject
Physics - Applied Physics
Condensed Matter - Materials Science
Language
Abstract
Dielectric capacitors are critical components in electronics and energy storage devices. The polymer based dielectric capacitors have advantages of flexibility, fast charge and discharge, low loss, and graceful failure. Elevating the use of polymeric dielectric capacitors for advanced energy applications such as electric vehicles (EVs) however requires significant enhancement of their energy densities. Here, we report a polymer thin film heterostructure based capacitor of poly(vinylidene fluoride)/poly(methyl methacrylate) with stratified 2D nanofillers (Mica or h-BN nanosheets) (PVDF/PMMA-2D fillers/PVDF), that shows enhanced permittivity, high dielectric strength and an ultra-high energy density of 75 J/cm3 with efficiency over 79%. Density functional theory calculations verify the observed permittivity enhancement. This approach of using oriented 2D nanofillers based polymer heterostructure composites is expected to be universal for designing high energy density thin film polymeric dielectric capacitors for myriads of applications.