학술논문

High Precision Orientation Mapping from 4D-STEM Precession Electron Diffraction data through Quantitative Analysis of Diffracted Intensities
Document Type
Working Paper
Source
Subject
Physics - Applied Physics
Language
Abstract
The association of scanning transmission electron microscopy (STEM) and the detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of material using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (~0.03 degrees), much lower than the traditional ACOM based on pattern matching algorithms (~1 degrees). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.
Comment: 31 pages, 6 figures, 1 table and supplementary information