학술논문

In-flight performance and calibration of the Grating Wheel Assembly sensors (NIRSpec/JWST)
Document Type
Working Paper
Source
Subject
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
The Near-Infrared Spectrograph (NIRSpec) on board of the James Webb Space Telescope will be the first multi-object spectrograph in space offering ~250,000 configurable micro-shutters, apart from being equipped with an integral field unit and fixed slits. At its heart, the NIRSpec grating wheel assembly is a cryogenic mechanism equipped with six dispersion gratings, a prism, and a mirror. The finite angular positioning repeatability of the wheel causes small but measurable displacements of the light beam on the focal plane, precluding a static solution to predict the light-path. To address that, two magneto-resistive position sensors are used to measure the tip and tilt displacement of the selected GWA element each time the wheel is rotated. The calibration of these sensors is a crucial component of the model-based approach used for NIRSpec for calibration, spectral extraction, and target placement in the micro-shutters. In this paper, we present the results of the evolution of the GWA sensors performance and calibration from ground to space environments.
Comment: To appear in Proceedings of SPIE conference "Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave"