학술논문

Fractional matter coupled to the emergent gauge field in a quantum spin ice
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
Electronic spins can form long-range entangled phases of condensed matter named quantum spin liquids. Their existence is conceptualized in models of two- or three-dimensional frustrated magnets that evade symmetry-breaking order down to zero temperature. Quantum spin ice (QSI) is a theoretically well-established example described by an emergent quantum electrodynamics, with excitations behaving like photon and matter quasiparticles. The latter are fractionally charged and equivalent to the `spinons' emerging from coherent phases of singlets in one dimension, where clear experimental proofs of fractionalization exist. However, in frustrated magnets it remains difficult to establish consensual evidence for quantum spin liquid ground states and their fractional excitations. Here, we use backscattering neutron spectroscopy to achieve extremely high resolution of the time-dependent magnetic response of the candidate QSI material Ce$_2$Sn$_2$O$_7$. We find a gapped spectrum featuring a threshold and peaks that match theories for pair production and propagation of fractional matter excitations (spinons) strongly coupled to a background gauge field. The multiple peaks are a specific signature of the $\pi$-flux phase of QSI, providing spectroscopic evidence for fractionalization in a three-dimensional quantum spin liquid.
Comment: 19 pages, 6 figures, updated text and references