학술논문

ATMOSPHERIX: III- Estimating the C/O ratio and molecular dynamics at the limbs of WASP-76 b with SPIRou
Document Type
Working Paper
Source
A&A 687, A119 (2024)
Subject
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
Measuring the abundances of C- and O-bearing species in exoplanet atmospheres enables us to constrain the C/O ratio, that contains indications about the planet formation history. With a wavelength coverage going from 0.95 to 2.5 microns, the high-resolution (R$\sim$70 000) spectropolarimeter SPIRou can detect spectral lines of major bearers of C and O in exoplanets. Here we present our study of SPIRou transmission spectra of WASP-76 b acquired for the ATMOSPHERIX program. We applied the publicly available data analysis pipeline developed within the ATMOSPHERIX consortium, analysing the data using 1-D models created with the petitRADTRANS code, with and without a grey cloud deck. We report the detection of H$_2$O and CO at a Doppler shift of around -6 km.s$^{-1}$, consistent with previous observations of the planet. Finding a deep cloud deck to be favoured, we measured in mass mixing ratio (MMR) log(H$_2$O)$_{MMR}$ = -4.52 $\pm$ 0.77 and log(CO)$_{MMR}$ = -3.09 $\pm$ 1.05 consistent with a sub-solar metallicity to more than 1$\sigma$. We report 3$\sigma$ upper limits for the abundances of C$_2$H$_2$, HCN and OH. We estimated a C/O ratio of 0.94 $\pm$ 0.39 ($\sim$ 1.7 $\pm$ 0.7 x solar, with errors indicated corresponding to the 2$\sigma$ values) for the limbs of WASP-76 b at the pressures probed by SPIRou. We used 1-D ATMO forward models to verify the validity of our estimation. Comparing them to our abundance estimations of H$_2$O and CO, as well as our upper limits for C$_2$H$_2$, HCN and OH, we found that our results were consistent with a C/O ratio between 1 and 2 x solar, and hence with our C/O estimation. Finally, we found indications of asymmetry for both H$_2$O and CO when investigating the dynamics of their signatures, pointing to a complex scenario involving possibly both a temperature difference between limbs and clouds being behind the asymmetry this planet is best known for.
Comment: 20 pages, 19 figures, accepted for publication in A&A