학술논문

A Random Growth Model with any Real or Theoretical Degree Distribution
Document Type
Working Paper
Source
Subject
Computer Science - Social and Information Networks
Language
Abstract
The degree distributions of complex networks are usually considered to be power law. However, it is not the case for a large number of them. We thus propose a new model able to build random growing networks with (almost) any wanted degree distribution. The degree distribution can either be theoretical or extracted from a real-world network. The main idea is to invert the recurrence equation commonly used to compute the degree distribution in order to find a convenient attachment function for node connections - commonly chosen as linear. We compute this attachment function for some classical distributions, as the power-law, broken power-law, geometric and Poisson distributions. We also use the model on an undirected version of the Twitter network, for which the degree distribution has an unusual shape. We finally show that the divergence of chosen attachment functions is heavily links to the heavy-tailed property of the obtained degree distributions.
Comment: 23 pages, 3 figures