학술논문

Observation of high-order quantum resonances in the kicked rotor
Document Type
Working Paper
Source
Phys.Rev.Lett. 98, 083004 (2007)
Subject
Quantum Physics
Language
Abstract
Quantum resonances in the kicked rotor are characterized by a dramatically increased energy absorption rate, in stark contrast to the momentum localization generally observed. These resonances occur when the scaled Planck's constant hbar=(r/s)*4pi, for any integers r and s. However only the hbar=r*2pi resonances are easily observable. We have observed high-order quantum resonances (s>2) utilizing a sample of low temperature, non-condensed atoms and a pulsed optical standing wave. Resonances are observed for hbar=(r/16)*4pi r=2-6. Quantum numerical simulations suggest that our observation of high-order resonances indicates a larger coherence length than expected from an initially thermal atomic sample.