학술논문

Thermodynamic and kinetic fragility of Freon113: the most fragile plastic crystal
Document Type
Working Paper
Source
Phys. Rev. Lett. 118, 105701 (2017)
Subject
Condensed Matter - Soft Condensed Matter
Condensed Matter - Disordered Systems and Neural Networks
Language
Abstract
We present a dynamic and thermodynamic study of the orientational glass former Freon113 (CCl2F-CClF2) in order to analyze its kinetic and thermodynamic fragilities. Freon113 displays internal molecular degrees of freedom which promote a complex energy landscape. Experimental specific heat and its microscopic origin, the vibrational density of states from inelastic neutron scattering, together with the orientational dynamics obtained by means of dielectric spectroscopy have revealed the highest fragility value, both thermodynamic and kinetic, found for this orientational glass former. The excess in both Debye-reduced specific heat and density of states (boson peak) evidences the existence of glassy low-energy excitations. We demonstrate that early proposed correlations between the boson peak and the Debye specific heat value are elusive as revealed by the clear counterexample of the studied case.
Comment: 13 pages, 5 figures