학술논문

Engineering Quantum Interference
Document Type
Working Paper
Source
Appl. Phys. Lett. 113, 192601 (2018)
Subject
Condensed Matter - Superconductivity
Language
Abstract
A model for describing interference and diffraction of wave functions of one-dimensional Josephson array interferometers is presented. The derived expression for critical current modulations accounts for an arbitrary number of square junctions, variable distance between these, and variable size of their area. Predictions are tested on real arrays containing up to 20 equally spaced and identical junctions and on arrays shaped with peculiar geometries. Very good agreement with the modulations predicted by the model and the experimental results is obtained for all the tested configurations. It is shown that specific designs of the arrays generate significant differences in their static and dynamical (non-zero voltage) properties. The results demonstrate that the magnetic field dependence of Josephson supercurrents shows how interference and diffraction of macroscopic quantum wavefunctions can be manipulated and controlled.
Comment: 5 pages, 4 figures