학술논문

Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Language
Abstract
Altermagnets are an emerging third elementary class of magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of timereversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism, but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO$_2$ by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic-structure basis for a family of novel phenomena and functionalities in fields ranging from topological matter to spintronics, that are based on the unconventional time-reversal symmetry breaking in altermagnets.