학술논문

Revealing the Chemical Structure of the Magellanic Clouds with APOGEE. II. Abundance Gradients of the Large Magellanic Cloud
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present the abundance gradients of the Large Magellanic Cloud (LMC) for 25 elemental abundance ratios and their respective temporal evolution as well as age-[X/Fe] trends using 6130 LMC field red giant branch (RGB) stars observed by SDSS-IV / APOGEE-2S. APOGEE is a high resolution ($R$ $\sim$22,500) $H$-band spectroscopic survey that gathered data on the LMC with broad radial and azimuthal coverage out to $\sim$10\degr. The calculated overall metallicity gradient of the LMC with no age binning is $-$0.0380 $\pm$ 0.0022 dex/kpc. We also find that many of the abundance gradients show a U-shaped trend as functions of age. This trend is marked by a flattening of the gradient but then a general steepening at more recent times. The extreme point at which all these gradients (with the U-shaped trend) begin to steepen is $\gtrsim$2 Gyr ago. In addition, some of the age-[X/Fe] trends show an increase starting a few Gyr before the extreme point in the gradient evolutions. A subset of the age-[X/Fe] trends also show maxima concurrent with the gradients' extreme points, further pinpointing a major event in the history of the LMC $\sim$2 Gyr ago. This time frame is consistent with a previously proposed interaction between the Magellanic Clouds suggesting that this is most likely the cause of the distinct trend in the gradients and age-[X/Fe] trends.
Comment: 25 pages, 19 figures, and 10 tables