학술논문

On the Role of LHC and HL-LHC in Constraining Flavor Changing Neutral Currents
Document Type
Working Paper
Source
Subject
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Language
Abstract
The Standard Model (SM) has no flavor-changing neutral current (FCNC) processes at the tree level. Therefore, processes featuring FCNC in new physics are tightly constrained by data. Typically, the lower bounds on the scale of new physics obtained from $K-\bar{K}$ or $B-\bar{B}$ mixing lie well above 10 TeV, surpassing the reach of current and future colliders. In this paper, we demonstrate, using a specific Z' model, that such limits can be severely weakened by applying certain parametrizations of the quark mixing matrices with no prejudice while maintaining the CKM matrix in agreement with the data. We highlight the valuable role of the often-overlooked D0 mixing in deriving robust FCNC limits and show that the LHC and HL-LHC are promising probes for flavor-changing interactions mediated by a Z' boson.
Comment: 11 pages, 7 figures