학술논문

Natural versus forced convection in laminar starting plumes
Document Type
Working Paper
Source
Subject
Physics - Fluid Dynamics
Physics - Space Physics
Language
Abstract
A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head dispersal is caused by a breakdown of overturning motion in the head, and a local Kelvin-Helmholtz instability on the exterior of the plume.
Comment: 8 pages, 8 figures, accepted for publication in Physics of Fluids (final version with corrections)