학술논문

Chemical composition of intermediate mass stars members of the M6 (NGC 6405) open cluster
Document Type
Working Paper
Source
The Astronomical Journal, 151:49 (30pp), 2016 March
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
We present here the first abundance analysis of 44 late B, A and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myrs). Spectra, covering the 4500 to 5800 \AA{} wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes (VLT). We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the $H_{\beta}$ profiles to synthetic ones. The abundances of up to 20 chemical elements, were derived for 19 late B, 16 A and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of $\mathrm{[Fe/H]=0.07\pm0.03}$ dex from the iron abundances of the F-type stars. We find that, for most chemical elements, the normal late B and A-type stars exhibit larger star-to-star abundance variations than the F-type stars do probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si and Sc appear to be anticorrelated to that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba about as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild-Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211), one HgMn star (HD 318126), and one He-weak P-rich (HD 318101) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modelling of HD 318101,the new He-weak P-rich CP star, using the Montr\'eal stellar evolution code XEVOL which treats self-consistently all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modelling attempts even when a range of turbulence profiles and mass loss rates were considered.
Comment: Accepted for publication in Astronomical Journal (Oct.15,2015), 115 pages, 15 figures