학술논문

Mechanically Detecting and Avoiding the Quantum Fluctuations of a Microwave Field
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
During the theoretical investigation of the ultimate sensitivity of gravitational wave detectors through the 1970's and '80's, it was debated whether quantum fluctuations of the light field used for detection, also known as photon shot noise, would ultimately produce a force noise which would disturb the detector and limit the sensitivity. Carlton Caves famously answered this question with "They do." With this understanding came ideas how to avoid this limitation by giving up complete knowledge of the detector's motion. In these back-action evading (BAE) or quantum non-demolition (QND) schemes, one manipulates the required quantum measurement back-action by placing it into a component of the motion which is unobserved and dynamically isolated. Using a superconducting, electro-mechanical device, we realize a sensitive measurement of a single motional quadrature with imprecision below the zero-point fluctuations of motion, detect both the classical and quantum measurement back-action, and demonstrate BAE avoiding the quantum back-action from the microwave photons by 9 dB. Further improvements of these techniques are expected to provide a practical route to manipulate and prepare a squeezed state of motion with mechanical fluctuations below the quantum zero-point level, which is of interest both fundamentally and for the detection of very weak forces.