학술논문

Cosmogenic production of $^{37}$Ar in the context of the LUX-ZEPLIN experiment
Document Type
Working Paper
Author
Aalbers, J.Akerib, D. S.Musalhi, A. K. AlAlder, F.Alsum, S. K.Amarasinghe, C. S.Ames, A.Anderson, T. J.Angelides, N.Araújo, H. M.Armstrong, J. E.Arthurs, M.Bai, X.Baker, A.Balajthy, J.Balashov, S.Bang, J.Bargemann, J. W.Bauer, D.Baxter, A.Beattie, K.Bernard, E. P.Bhatti, A.Biekert, A.Biesiadzinski, T. P.Birch, H. J.Blockinger, G. M.Bodnia, E.Boxer, B.Brew, C. A. J.Brás, P.Burdin, S.Busenitz, J. K.Buuck, M.Cabrita, R.Carmona-Benitez, M. C.Cascella, M.Chan, C.Chawla, A.Chen, H.Chott, N. I.Cole, A.Converse, M. V.Cottle, A.Cox, G.Creaner, O.Cutter, J. E.Dahl, C. E.David, A.de Viveiros, L.Dobson, J. E. Y.Druszkiewicz, E.Eriksen, S. R.Fan, A.Fayer, S.Fearon, N. M.Fiorucci, S.Flaecher, H.Fraser, E. D.Fruth, T.Gaitskell, R. J.Genovesi, J.Ghag, C.Gibson, E.Gilchriese, M. G. D.Gokhale, S.van der Grinten, M. G. D.Gwilliam, C. B.Hall, C. R.Haselschwardt, S. J.Hertel, S. A.Horn, M.Huang, D. Q.Hunt, D.Ignarra, C. M.Jahangir, O.James, R. S.Ji, W.Johnson, J.Kaboth, A. C.Kamaha, A. C.Kamdin, K.Khaitan, D.Khazov, A.Khurana, I.Kodroff, D.Korley, L.Korolkova, E. V.Kraus, H.Kravitz, S.Kreczko, L.Kudryavtsev, V. A.Leason, E. A.Leonard, D. S.Lesko, K. T.Levy, C.Lee, J.Lin, J.Lindote, A.Linehan, R.Lippincott, W. H.Liu, X.Lopes, M. I.Asamar, E. LopezLopez-Paredes, B.Lorenzon, W.Luitz, S.Majewski, P. A.Manalaysay, A.Manenti, L.Mannino, R. L.Marangou, N.McCarthy, M. E.McKinsey, D. N.McLaughlin, J.Miller, E. H.Mizrachi, E.Monte, A.Monzani, M. E.Morad, J. A.Mendoza, J. D. MoralesMorrison, E.Mount, B. J.Murphy, A. St. J.Naim, D.Naylor, A.Nedlik, C.Nelson, H. N.Neves, F.Nikoleyczik, J. A.Nilima, A.Olcina, I.Oliver-Mallory, K.Pal, S.Palladino, K. J.Palmer, J.Parveen, N.Patton, S. J.Pease, E. K.Penning, B.Pereira, G.Perry, E.Pershing, J.Piepke, A.Porzio, D.Qie, Y.Reichenbacher, J.Rhyne, C. A.Richards, A.Riffard, Q.Riffard, %Q.Rischbieter, G. R. C.Rosero, R.Rossiter, P.Rushton, T.Santone, D.Sazzad, A. B. M. R.Schnee, R. W.Scovell, P. R.Shaw, S.Shutt, T. A.Silk, J. J.Silva, C.Sinev, G.Smith, R.Solmaz, M.Solovov, V. N.Sorensen, P.Soria, J.Stancu, I.Stevens, A.Stifter, K.Suerfu, B.Sumner, T. J.Swanson, N.Szydagis, M.Taylor, W. C.Taylor, R.Temples, D. J.Terman, P. A.Tiedt, D. R.Timalsina, M.To, W. H.Tong, Z.Tovey, D. R.Trask, M.Tripathi, M.Tronstad, D. R.Turner, W.Utku, U.Vaitkus, A.Wang, B.Wang, Y.Wang, J. J.Wang, W.Watson, J. R.Webb, R. C.White, R. G.Whitis, T. J.Williams, M.Wolfs, F. L. H.Woodford, S.Woodward, D.Wright, C. J.Xia, Q.Xiang, X.Xu, J.Yeh, M.
Source
Subject
High Energy Physics - Experiment
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - Instrumentation and Methods for Astrophysics
High Energy Physics - Phenomenology
Language
Abstract
We estimate the amount of $^{37}$Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting $^{37}$Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea level production rate of $^{37}$Ar in natural xenon is estimated to be 0.024~atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1~tonne/month, the average $^{37}$Ar activity after 10~tonnes are purified and transported underground is 0.058--0.090~$\mu$Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic $^{37}$Ar will appear as a noticeable background in the early science data, while decaying with a 35~day half-life. This newly-noticed production mechanism of $^{37}$Ar should be considered when planning for future liquid xenon-based experiments.